

授課教師: 傅皓政 老師







- 除了命題邏輯的推論規則之外,還需要 處理量詞的規則。
- 量詞規則的分類:個例規則、通稱規則、 否定規則。



真值樹法與自然演繹法的差別在於:自然演繹法的限制在於無法證明其為有效論證,真值樹法卻可以。

自然演繹法與真值樹法不同處在於:真值樹法只有分解規則,在量詞中只有個例 化規則,然自然演繹法不僅有個例化規則,尚有普遍化規則。



• (1) 全稱個例規則: (UI, universal instantiation)

$$\frac{(\forall x)\varphi(x)}{\varphi(n/x)}$$

此處出現的 n 代表所有出現過的名稱, 也可以說沒有限制。

遇到for all x, x可帶任意名稱。



• (2) 全稱通稱規則: (UG, universal generalization)

$$\frac{\varphi(n)}{(\forall x)\varphi(x/n)}$$

• 此處出現的 *n* 不能是已有特定指涉的名稱符號,也不能是由 EI 規則得到的語句中的名稱符號。

原來是φ(n),要變成 $\forall x φ x$ ,這會有問題,比如:

我說:「班上A被我當掉了。」

同學問:「A是誰?」

我說:「我不知道,反正A被我當掉了。」

然後同學就很悲傷的說:「班上所有人都被當掉了。」

因對所有x來說,x都被當掉了。

#### 比如:

全班過年的壓歲錢都超過十萬,就得到一個個例,有個A壓歲錢超過十萬,那我可以推回所有人壓歲錢都超過十萬,因我是從 $\forall x$ 得來,若非由 $\forall x$ 得來,就不能推回去,此為其限制。

#### 能否用此規則的限制在於:

- 一、不可為個體常元,必須原來即為name latter的角色。
- 二、它必須要由∀x來,也就是須從全稱量詞來,不可從存在量詞來。若是由全稱量詞個例化再普遍化,是可以的,若是由存在量詞被個例化,便不可普遍化。因此若此推論是,班上有些人壓歲錢十萬塊以上,得到有人壓歲錢十萬塊以上,因此全班壓歲錢皆十萬塊以上,便不合理。



• (3) 存在通稱規則: (EG, existential generalization)

$$\frac{\varphi(n)}{(\exists x)\varphi(x/n)}$$

• 此處出現的 n 沒有限制。





• (4) 存在個例規則: (EI, existential instantiation)

$$\frac{(\exists x)\varphi(x)}{\varphi(n/x)}$$

• 此處出現的 *n* 必須是未出現過名稱符號 也就是必須確定是第一次出現。 **★** 

必須確定所用的name latter前面沒用過。



• 否定規則:(QN)

• 定義: $(\exists x)\phi(x) =_{\text{df.}} \neg(\forall x)\neg\phi(x)$ 

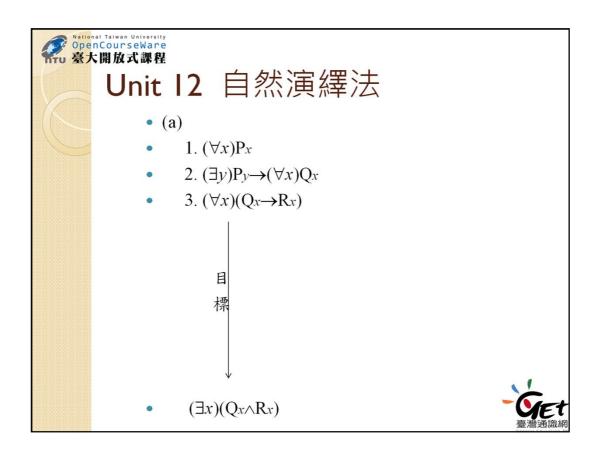
- $\vdash (\exists x) \varphi(x) \leftrightarrow \neg(\forall x) \neg \varphi(x)$
- $\vdash \neg (\forall x) \varphi(x) \leftrightarrow (\exists x) \neg \varphi(x)$
- $\vdash (\forall x) \neg \varphi(x) \leftrightarrow \neg (\exists x) \varphi(x)$
- $\vdash \neg (\exists x) \neg \varphi(x) \leftrightarrow (\forall x) \varphi(x)$





- 實例說明:
- (a)  $(\forall x)Px$ ,  $(\exists y)Py \rightarrow (\forall x)Qx$ ,  $(\forall x)(Qx \rightarrow Rx) \vdash (\exists x)(Qx \land Rx)$
- (b)  $(\forall x)(Kx \rightarrow \neg Mx)$ ,  $(\forall x)(Kx \lor Nx)$ ,  $(\forall x)(\neg Kx \lor Mx)$  $\vdash (\exists x)(\neg Kx \land Nx)$
- (c)  $\neg(\exists x)(\neg Cx \land Dx)$ ,  $(\exists x)Dx \vdash (\exists x)Cx$
- (d)  $(\forall x)(Bx \rightarrow Cx)$ ,  $(\forall x)(Ax \leftrightarrow \neg Bx) \vdash (\exists x)(Ax \lor Cx)$
- (e)  $(\forall x)(\forall y)Fxy \vdash (\forall y)(\forall x)Fxy$
- (f)  $(\forall x)(\forall y)Fxy \vdash (\forall x)(\forall y)Fyx$





從結論推想,既是 $Qx\land Rx$ ,則便須要 $Qa\land Ra或Qb\land Rb$ ,最後用存在通則化(EG)即可。 從前提找,有 $Qx\rightarrow Rx$ ,第三個前提告訴我們若有Qa,便可有Ra。

| Ope | al Talwan University<br>ncourseWare<br>:開放式課程<br>Unit I2 自然演為 | 睪法         |  |  |  |  |
|-----|---------------------------------------------------------------|------------|--|--|--|--|
|     | • (a)                                                         |            |  |  |  |  |
|     | • 1. $(\forall x)P_x$                                         | Pr         |  |  |  |  |
|     | • 2. $(\exists y)Py \rightarrow (\forall x)Qx$                | Pr         |  |  |  |  |
|     | • 3. $(\forall x)(Qx \rightarrow Rx)$                         | Pr         |  |  |  |  |
|     | • 4. Pa                                                       |            |  |  |  |  |
|     | • 5. $(\exists y)P_y$                                         |            |  |  |  |  |
|     | • 6. $(\forall x)Qx$                                          | <u></u>    |  |  |  |  |
|     | • 7. Qa                                                       |            |  |  |  |  |
|     | • 8. Q <i>a</i> →R <i>a</i>                                   |            |  |  |  |  |
|     | • 9. Ra                                                       |            |  |  |  |  |
|     | • 10. Q <i>a</i> ∧R <i>a</i>                                  |            |  |  |  |  |
|     | • 11. $(\exists x)(Qx \land Rx)$                              | <b>した。</b> |  |  |  |  |

推論步驟的建構是目標導向,因此要想辦法得到結論。



- (a)
- 1.  $(\forall x)$ Px
- 2.  $(\exists y)Py \rightarrow (\forall x)Qx$
- 3.  $(\forall x)(Qx \rightarrow Rx)$
- 4. Pa
- 5.  $(\exists y)$ Py
- 6.  $(\forall x)Qx$
- 7. Qa
- 8. Q*a*→R*a*
- 9. Ra
- 10. Q*a*∧R*a*
- 11.  $(\exists x)(Qx \land Rx)$

Pr

Pr

Pr

1, UI

4, EG

2,5 MP

6, UI

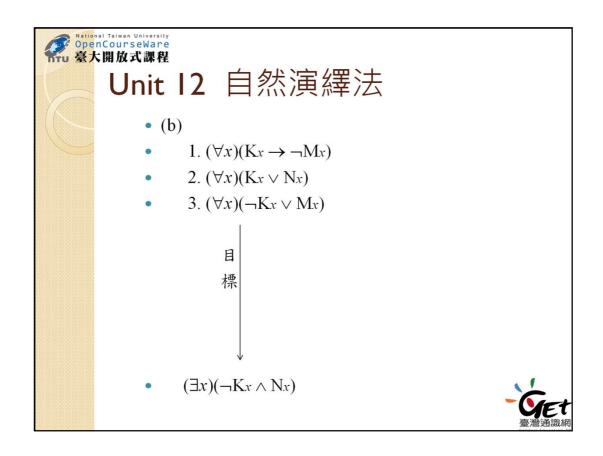
3, UI

7,8 MP

7,9 Conj

10, EG





有三前提,要得到結論,思路應該如何?結論是 $\wedge$ ,從前面那裡可以得到Ka,三個前提都有,然都是選言,大概的思考是去否定一個來得到另一個,這有點麻煩,Mx又要靠Ka。這想法要利用到條件句的三段論,就是P則Q,Q則R,以得到P則R

12



自然演繹法中、此所見的a、b、c均為name latter,而非個體常元的角色,否則便無法使用UG。

自然演繹法特點是證明並非唯一,可以找到其他方式,重要的是目標導向的證明,要設法得到結論。盲點是若為無效論證,是無法證明,此及自然演繹法的盲點。

知道這樣證,是需要一些天賦或洞見(insight),需要訓練的,自然演繹法中沒有標準作業流程,但有一些策略,以訓練思考。

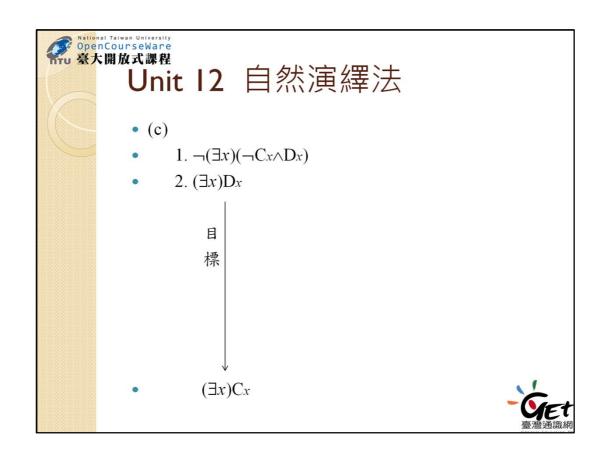
初接觸邏輯,最大的困擾就是「我怎麼知道要這樣證?」我們只能提供一些策略,多加練習。

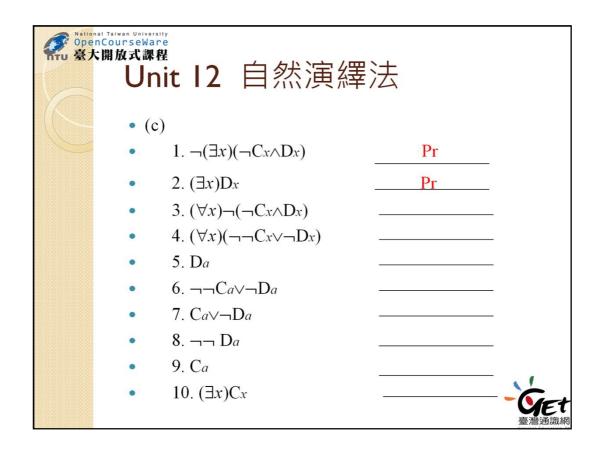


- (b) 1.  $(\forall x)(Kx \rightarrow \neg Mx)$
- 2.  $(\forall x)(\mathbf{K}x \vee \mathbf{N}x)$
- 3.  $(\forall x)(\neg Kx \vee Mx)$
- 4.  $\neg Ka \lor Ma$
- 5. Ma ∨ ¬Ka
- 6.  $\neg\neg Ma \lor \neg Ka$
- 7.  $\neg Ma \rightarrow \neg Ka$
- 8.  $Ka \rightarrow \neg Ma$
- 9.  $Ka \rightarrow \neg Ka$
- 10.  $\neg Ka \lor \neg Ka$
- 11. ¬Ka
- 12. Ka∨ Na
- 13. Na
- 14. ¬K*a* ∧ N*a*
- 15.  $(\exists x)(\neg Kx \wedge Nx)$

- Pr
- Pr
- Pr
- 3, UI
- 4, Comm
- 5, DN
- 6, Impl
- 1, UI
- 1, 01
- 7, 8, HS
- 9, Impl
- 10, Taut
- 2, UI
- 11, 12, DS
- 11, 13, Conj
- 14, EG







證明若是對所有的x就不能這樣推,為什麼?就是它的a從那來,是從前提二來的, 所以最後不能用UG規則。

比如:班上有同學期末滿分,無法進一步推論所有人都滿分。



- (c)
- 1.  $\neg(\exists x)(\neg Cx \land Dx)$
- 2.  $(\exists x)Dx$
- 3.  $(\forall x) \neg (\neg Cx \land Dx)$
- 4.  $(\forall x)(\neg\neg Cx \lor \neg Dx)$
- 5. Da
- 6. ¬¬Ca∨¬Da
- 7. Ca∨¬Da
- 8. ¬¬ Da
- 9. Ca
- 10.  $(\exists x)$ Cx

Pr

Pr

1, QN

3, DeM

2, EI

4, UI

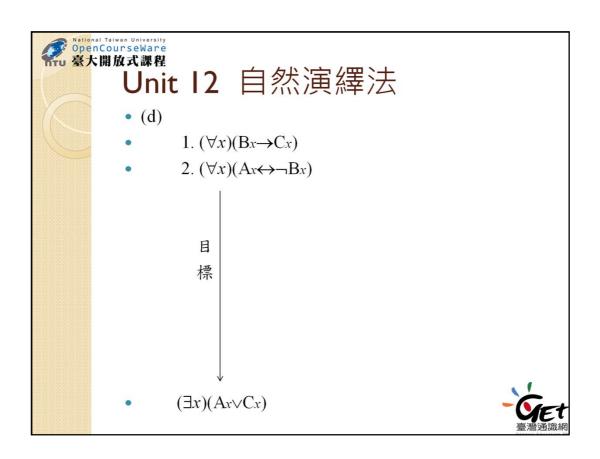
6, DN

5, DN

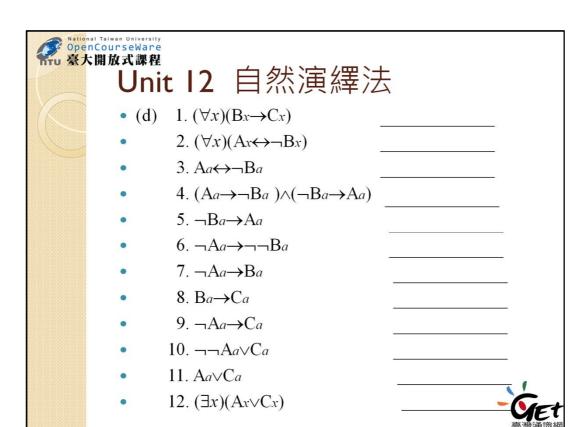
7,8, DS

9, EG





顯然中間者是Bx











- (e)
- •
- 1.  $(\forall x)(\forall y)Fxy$
- 2.  $(\forall y)$ Fay
- 3. Fab
- 4.  $(\forall x)$ Fxb
- 5.  $(\forall y)(\forall x)Fxy$

| Pr    | _ |
|-------|---|
| 1, UI |   |
| 2, UI |   |
| 3, UG |   |
| 4, UG |   |







| 1 |   | ) | 1 | • |  |
|---|---|---|---|---|--|
| 4 | L |   | 1 |   |  |
|   |   |   |   | _ |  |

\_\_\_\_





• (f)

- 1.  $(\forall x)(\forall y)$ Fxy
- 2.  $(\forall y)$ Fay
- 3. Fab
- 4.  $(\forall y)$ Fyb
- 5.  $(\forall x)(\forall y)F_{yx}$

| P  | r |
|----|---|
| 13 |   |

1, UI

2, UI

3, UG

4, UG

